ARBOVIRUS # Including SLE, Dengue, Yellow Fever Information on West Nile virus is found separately # **✓ DISEASE AND EPIDEMIOLOGY** # **Clinical Description:** Arboviral infections may be asymptomatic or may result in febrile illnesses of variable severity which are sometimes associated with central nervous system (CNS) involvement. When the CNS is affected, clinical syndromes include meningitis, myelitis and encephalitis, which are clinically indistinguishable from similar syndromes caused by other viruses. - Arboviral meningitis is usually characterized by fever, headache, stiff neck, and white blood cells in the cerebrospinal fluid (pleocytosis). - Arboviral myelitis is usually characterized by fever and acute bulbar (pertaining to the circulatory or respiratory system) or limb paresis (partial paralysis) or flaccid paralysis. - Arboviral encephalitis is usually characterized by fever, headache, and altered mental status ranging from confusion to coma with or without additional signs of brain dysfunction. Less common neurological syndromes can include cranial and peripheral neuritis or other neuropathies, including Guillain-Barré syndrome (ascending paralysis).. Non-neuroinvasive syndromes caused by these viruses can include myocarditis (inflammation of the sac surrounding the heart), pancreatitis, or hepatitis. In addition, they may cause febrile illnesses (e.g., Dengue fever) that are non-localized, self-limited illnesses with headache, myalgias, arthralgias, and sometimes accompanied by skin rash or lymphadenopathy. Laboratory-confirmed arboviral illnesses lacking documented fever can occur, and overlap among the various clinical syndromes is common. # Causative Agent: There are about 570 viruses worldwide that are spread through arthropods (insects). More than 30 of these arboviruses have been identified as human pathogens in the western hemisphere. In Utah, three mosquito-borne arboviruses that cause encephalitis in humans have been identified: Western equine encephalitis (WEE), Saint Louis encephalitis (SLE) and West Nile virus (WNV). - WEE is of the genus *Alphavirus* and in the family Togaviridae. - SLE is a member of the family Flaviviridae. - WNV, also a member of the Flaviviridae family and Flavivirus genus, has recently appeared in the West. Other important arboviral encephalitides in the Americas include - Powassan encephalitis, - Venezuelan equine encephalitis (VEE), Page 1 of 11 10/12/2007 - Eastern equine encephalitis (EEE), - LaCrosse encephalitis (part of the California encephalitis virus serogroup), - Tensaw encephalitis, - Everglades encephalitis, - Ilheus encephalitis, and - Snowshoe hare encephalitis. Other arboviral diseases include • Dengue (Dengue Hemorrhagic Fever – DHF; Dengue shock syndrome – DSS), Other Problems to be Considered: - Japanese encephalitis virus (JEV), - Powassan, - Yellow Fever, and - Other less common infections. **UPHL:** UPHL will act as a referral agent to the CDC for confirmation of arboviruses outside of WNV and SLE. # **Differential Diagnosis:** Bartonellosis Tuberculosis Cytomegalovirus Venezuelan Encephalitis Herpes Simplex West Nile Encephalitis Histoplasmosis Leptospirosis Lyme Disease Malaria Infective endocarditis MeningitisMumpsMycoplasma InfectionsRabies virusNaegleria InfectionStroke Rheumatoid Arthritis Metabolic encephalopathy St. Louis Encephalitis Reye syndrome Systemic Lupus Erythematosus Epstein-Barr virus (EBV) **Toxoplasmosis** # Laboratory identification: Laboratory diagnosis is based upon demonstration of specific IgM in serum or CSF, or antibody rises between early (acute) and late (convalescent) specimens of serum. Cross-reactions may occur within related virus groups also, the virus occasionally can be isolated from blood or CSF. ### **Treatment:** There is no specific treatment available for arboviral infections. Treatment of symptoms and supportive care are the only methods of treatment available for arboviral infections. # Case fatality: The case-fatality ratios range from less than 1% to 60%. • WEE, the case-fatality rates vary for adults and children, but ranges from 3-4%. Page 2 of 11 10/12/2007 - EEE, as many as one-third of cases are fatal. - SLE can cause mild infections that occur without apparent symptoms other than fever with headache. More severe infection is marked by headache, high fever, neck stiffness, stupor, disorientation, coma, tremors, occasional convulsions (especially in infants) and spastic (but rarely flaccid) paralysis. The case-fatality ratio ranges from 3% to 30%, especially in the elderly. - Yellow Fever (YF): Mortality rates due to the toxic form of disease vary from 25-50%, but the mortality rate has been reported to be as low as 1%. The number of reported deaths from YF among travelers over the past 10 years has increased, and more can be expected unless YF vaccine is most appropriately used. - JEV: Only 1 per 250 infections results in symptomatic disease. Mortality rates in places with intensive care capabilities are 5-10%. In less developed areas, mortality rates may exceed 35%. Worldwide, more than 10,000 reported deaths occur per year - Dengue: Treated DHF/DSS is associated with a 3% mortality rate. Untreated DHF/DSS is associated with a 50% mortality rate. ### Reservoir: Reservoirs for many of the arboviral encephalitides are not known. Birds carry both EEE and WNV. The virus usually resides in birds and the mosquitoes that feed on them. Rarely, other kinds of mosquitoes that also bite people and horses pick up the viruses. The vectors for California encephalitis, LaCrosse encephalitis, snowshoe hare encephalitis, and Jamestown Canyon virus are Aedes mosquitoes. The vector for Powassan encephalitis virus is the Ixodes cookei tick, and the reservoir includes rodents, other small mammals and birds. VEE is maintained in a rodent-mosquito cycle; horses are also an important reservoir during outbreaks of VEE. WEE is spread primarily by the vector mosquito *Culex tarsalis*. Other mosquitoes (eg, *Aedes* species) and, occasionally, small wild mammals also have been known to spread the virus. JEV is spread throughout mostly rural areas of Asia by culicine mosquitoes, most often *Culex tritaeniorhynchus*. Yellow Fever is a mosquito-borne viral infection endemic to Africa and South America, transmitted by the *Aedes aegypti* mosquito. Monkeys and mosquitoes are the primary reservoirs for Yellow Fever in forested areas of Africa and South America. ### **Transmission:** EEE, Ilheus encephalitis, snowshoe hare encephalitis, SLE, Yellow Fever, Dengue, JEV, California encephalitis, Jamestown Canyon virus, WEE, LaCrosse encephalitis, VEE, Tensaw encephalitis, and Everglades encephalitis, are spread to humans by the bite of an infected mosquito. Powassan encephalitis is spread to humans by the bite of an infected tick (Ixodes cookei). Direct person-to-person spread of arboviral infections does not occur. # Susceptibility: The elderly and children are more susceptible. Children have higher rates of dengue in endemic areas, because infection confers immunity to that serotype. As with most other arboviruses, infection confers immunity. Page 3 of 11 10/12/2007 ### Incubation period: The incubation periods for some of the arboviral encephalitides are as follows: EEE, 3–10 days; California encephalitis, 5–15 days; Powassan encephalitis, 4–18 days; SLE, 4–21 days; VEE, 2–6 days; WEE, 5–10 days; and LaCrosse encephalitis and Jamestown Canyon virus, 5–15 days; Yellow Fever is 3-6 days; Dengue usually 4–7 days, although it may range from 3–14 days; JEV, 4-15 days. # Period of communicability: Arboviral infections or agents of transmission are not communicable from person-toperson, except in rare instances (blood transfusion, organ donation). # **Epidemiology:** Most cases of arboviral encephalitis in North America occur in the late summer and early to mid-fall. The elderly are at greatest risk of encephalitis with SLE, while children under 15 years old are at greatest risk from LaCrosse virus infection, and both children and elderly are at greatest risk for EEE. WEE is found in the western and central portions of the U.S., in Canada, and in parts of South America. SLE is found in most of the U.S., as well as in parts of Canada, the Caribbean Islands, and Central and South America. LaCrosse encephalitis is found in the eastern half of the U.S. Snowshoe hare encephalitis occurs in Canada, China and Russia. Powassan encephalitis occurs in Canada, the U.S. and Russia. VEE is endemic in parts of South and Central America and the Caribbean. JEV is spread throughout mostly rural areas of Asia by culicine mosquitoes, most often *Culex tritaeniorhynchus*. It is the most common form of viral encephalitis in Asia. Approximately 3 billion people currently live in areas endemic for Japanese encephalitis; these areas extend from Pakistan to maritime Siberia and Japan. Japanese encephalitis mostly develops among military personnel, expatriates, and, rarely, returning travelers. From 1978-1993, 12 cases occurred in the United States. The risk of symptomatic infection among travelers is estimated to be 1 case per 150,000 person-months in an endemic area. Outbreaks are rare in the US territories of Guam and Saipan. Japanese encephalitis is a seasonal disease, with most cases occurring in temperate areas from June to September. Further south in subtropical areas, transmission begins as early as March and extends until October. Transmission may occur all year in some tropical areas (eg, Indonesia). Worldwide, approximately 35,000-50,000 symptomatic cases are reported per year, although this is likely an underestimation of the true incidence of the disease. Local incidence rates range from 1-10 cases per 100,000 persons but can reach more than 100 cases per 100,000 persons during outbreaks. Dengue has been called the most important mosquito-transmitted viral disease in terms of morbidity and mortality. Dengue virus causes about 100 million cases of acute febrile disease annually, including more than 500,000 reported cases of dengue hemorrhagic fever (DHF)/ dengue shock syndrome (DSS). Currently, dengue is endemic in 112 countries. The world's largest known epidemic of DHF/DSS occurred in Cuba in 1981, with more than 116,000 persons hospitalized and as many as 11,000 cases reported in a single day. Page 4 of 11 10/12/2007 Each year, an estimated 200,000 cases of YF occur in Africa and South America combined, causing 20,000-30,000 deaths. The number of total cases reported to the WHO each year from Africa and South America ranges from hundreds to a few thousand. The true incidence is estimated to be at least 40 times more than this in Africa and 10 times more than this in South America. Since 1996, 3 fatal cases of YF have been reported in American travelers to the Amazon. None of the patients were immunized against YF. The CDC estimates that YF immunization of travelers to YF endemic areas has declined 50% from 1992-1998. # **✓ PUBLIC HEALTH CONTROL MEASURES** ### Public health responsibility: - Investigate all suspect cases of disease and fill out and submit appropriate disease investigation forms. - Provide education to the general public, clinicians, and first responders regarding disease transmission and prevention. - Identify clusters or outbreaks of this disease. - Identify sources of exposure and stop further transmission. ### **Prevention:** ### **Environmental Measures** People should be encouraged to reduce mosquito populations around their homes and neighborhoods by getting rid of any standing water that might support mosquito breeding. Mosquitoes will begin to breed in any puddle or standing water that lasts for more than four days. People should be advised of the following: - Dispose of or regularly empty any metal cans, plastic containers, ceramic pots, and other containers (including trash cans) on their property that might hold water. - Pay special attention to discarded tires. Stagnant water in tires is a common place for mosquitoes to breed. - Drill holes in the bottom of recycling containers that are left outdoors, so that water can drain out. - Clean clogged roof gutters; remove leaves and debris that may prevent drainage of rainwater. - Turn over plastic wading pools and wheelbarrows when not in use. - Do not allow water to stagnate in birdbaths; aerate ornamental ponds or stock them with fish. - Keep swimming pools clean and properly chlorinated; remove standing water from pool covers. - Use landscaping to eliminate standing water. ### Personal Preventive Measures/Education • Get vaccinated for diseases which have available vaccines (Yellow Fever and Japanese Encephalitis Virus), if you live, work, or plan to travel to an endemic Page 5 of 11 10/12/2007 - area. People should also be advised to take the following precautions if they live in or visit an area with mosquitoes: - Avoid outdoor activities during the time of greatest mosquito activity (depends on mosquito species). Unlike other vectors, the principal mosquito vectors of Yellow Fever bite during daytime hours. - Fix any holes in screens, and make sure they are tightly attached to all doors and windows. - Use mosquito netting when sleeping. - Use repellents containing DEET (N,N-diethyl-m-toluamide), and choose a product that will provide sufficient protection for the amount of time spent outdoors. Product labels often indicate the length of time that someone can expect protection from a product. DEET is considered safe when used according to the manufacturer's directions. The efficacy of DEET levels off at a concentration of 30%, which is the highest concentration recommended for children and adults. DEET products should not be used on children less than two months of age. Mosquito netting may be used to cover infant carriers or to protect other areas for children less than two months of age. The following precautions should be observed when using DEET products: - Avoid using DEET products that combine the repellent with a sunscreen. Sunscreens may need to be reapplied too often, resulting in an over application of DEET. - o Apply DEET on exposed skin, using only as much as needed. - o Do not use DEET on the hands of young children, and avoid applying repellent to areas around the eyes and the mouth. - o Do not use DEET over cuts, wounds, or irritated skin. - o Wash treated skin with soap and water after returning indoors, and wash treated clothing. - O Avoid spraying DEET products in enclosed areas. Picardin (KBR 3023) is a relatively new repellent that is now available in the U.S. Recent studies have shown it to be safe and effective. Picardin-containing repellents should be used according to the manufacturer's recommendations. A number of plant-derived products are available for use as repellents, but most of these products do not provide the same level or duration of protection as products containing DEET. However, there are studies that show that oil of lemon eucalyptus [p-methane 3,8-diol(PMD)] provides as much protection as low concentrations of DEET when tested against mosquitoes found in the U.S. # **Chemoprophylaxis:** None. ### Vaccine: Vaccines are available for JEV and Yellow Fever. No other vaccines exist for other arboviral infections. Page 6 of 11 10/12/2007 ### Isolation and quarantine requirements: **Isolation:** None **Hospital:** Standard body substance precautions. **Quarantine:** None. # **✓ CASE INVESTIGATION** # Reporting: Report all suspect and confirmed cases of any arboviral infection. ### Case definition: # **Neuroinvasive and Non-Neuroinvasive Domestic Arboviral Diseases (2004)** (Includes diseases caused by California serogroup viruses; eastern and western equine encephalitis viruses; and Powassan, St. Louis encephalitis, Dengue, and JEV. For Yellow Fever, see next case definition below. ### **Clinical Description** Cases of arboviral disease are classified either as neuroinvasive or non-neuroinvasive, according to the following criteria: Neuroinvasive disease requires the presence of fever and at least one of the following, as documented by a physician and in the absence of a more likely clinical explanation: - Acutely altered mental status (e.g., disorientation, obtundation, stupor, or coma), or - Other acute signs of central or peripheral neurologic dysfunction (e.g., paresis or paralysis, nerve palsies, sensory deficits, abnormal reflexes, generalized convulsions, or abnormal movements), or - Pleocytosis (increased white blood cell concentration in cerebrospinal fluid [CSF]) associated with illness clinically compatible with meningitis (e.g., headache or stiff neck). Non-neuroinvasive disease requires, at minimum, the presence of documented fever, as measured by the patient or clinician, the absence of neuroinvasive disease (above), and the absence of a more likely clinical explanation for the illness. Involvement of non-neurological organs (e.g., heart, pancreas, liver) should be documented using standard clinical and laboratory criteria. ### **Laboratory Criteria** Cases of arboviral disease are also classified either as confirmed or probable, according to the following laboratory criteria: Page 7 of 11 10/12/2007 ### Confirmed case: Four-fold or greater change in virus-specific serum antibody titer, or - Isolation of virus from or demonstration of specific viral antigen or genomic sequences in tissue, blood, CSF, or other body fluid, or - Virus-specific immunoglobulin M (IgM) antibodies demonstrated in CSF by antibody-capture enzyme immunoassay (EIA), or - Virus-specific IgM antibodies demonstrated in serum by antibody-capture EIA and confirmed by demonstration of virus-specific serum immunoglobulin G (IgG) antibodies in the same or a later specimen by another serologic assay (e.g., neutralization or hemagglutination inhibition). #### Probable case: - Stable (less than or equal to a two-fold change) but elevated titer of virusspecific serum antibodies, or - Virus-specific serum IgM antibodies detected by antibody-capture EIA but with no available results of a confirmatory test for virus-specific serum IgG antibodies in the same or a later specimen. ### Case Classification A case must meet one or more of the above clinical criteria and one or more of the above laboratory criteria. #### Comment Because closely related arboviruses exhibit serologic cross-reactivity, positive results of serologic tests using antigens from a single arbovirus can be misleading. In some circumstances (e.g., in areas where two or more closely related arboviruses occur, or in imported arboviral disease cases), it may be epidemiologically important to attempt to pinpoint the infecting virus by conducting cross-neutralization tests using an appropriate battery of closely related viruses. This is essential, for example, in determining that antibodies detected against St. Louis encephalitis virus are not the result of an infection with West Nile (or dengue) virus, or vice versa, in areas where both of these viruses occur. Because dengue fever and West Nile fever can be clinically indistinguishable, the importance of a recent travel history and appropriate serologic testing cannot be overemphasized. In some persons, West Nile virusspecific serum IgM antibody can wane slowly and be detectable for more than one year following infection. Therefore, in areas where West Nile virus has circulated in the recent past, the co-existence of West Nile virus-specific IgM antibody and illness in a given case may be coincidental and unrelated. In those areas, the testing of serially collected serum specimens assumes added importance. The seasonality of arboviral transmission is variable and depends on the geographic location of exposure, the specific cycles of viral transmission, and local climatic conditions. Reporting should be etiology-specific (see below; the six diseases printed in bold are nationally reportable to CDC): Page 8 of 11 10/12/2007 - St. Louis encephalitis virus disease - West Nile virus disease - Powassan virus disease - Eastern equine encephalitis virus disease - Western equine encephalitis virus disease - California serogroup virus disease (includes infections with the following viruses: California encephalitis, Jamestown Canyon, Keystone, La Crosse, snowshoe hare, and trivittatus) Note: Due to the continued risk of unintentional or intentional introduction of exotic arboviruses into the United States (e.g., Venezuelan equine encephalitis virus), or the reemergence of indigenous epidemic arboviruses (e.g., St. Louis encephalitis and western equine encephalitis viruses), physicians and local public health officials should maintain a high index of clinical suspicion for cases of potential exotic or unusual arboviral etiology, and consider early consultation with arboviral disease experts at state health departments and CDC. # Yellow Fever (1997) ### Clinical description A mosquito-borne viral illness characterized by acute onset and constitutional symptoms followed by a brief remission and a recurrence of fever, hepatitis, albuminuria, and symptoms and, in some instances, renal failure, shock, and generalized hemorrhages. ### Laboratory criteria for diagnosis - Fourfold or greater rise in Yellow Fever antibody titer in a patient who has no history of recent Yellow Fever vaccination and cross-reactions to other flaviviruses have been excluded or - Demonstration of Yellow Fever virus, antigen, or genome in tissue, blood, or other body fluid ### Case classification #### Probable: A clinically compatible case with supportive serology (stable elevated antibody titer to Yellow Fever virus [e.g., greater than or equal to 32 by complement fixation, greater than or equal to 256 by immunofluorescence assay, greater than or equal to 320 by hemagglutination inhibition, greater than or equal to 160 by neutralization, or a positive serologic result by immunoglobulin M-capture enzyme immunoassay]. Cross-reactive serologic reactions to other flaviviruses must be excluded, and the patient must not have a history of Yellow Fever vaccination.) Confirmed: Page 9 of 11 10/12/2007 A clinically compatible case that is laboratory confirmed. ### Nosocomial: Although rare, nosocomial cases of arboviral infections could occur via blood transfusion or via organ transplant. Contact UDOH immediately with a suspected case of nosocomial arboviral infection. # **Case Investigation Process:** - Fill out morbidity form - Verify case status. - Fill out disease investigation form. - Determine whether patient had travel/exposure history consistent with acquisition of disease in Utah or elsewhere. - If patient acquired disease in Utah, identify the source of transmission and eliminate it. ### Outbreaks: An outbreak will be defined as: a larger than normal number of cases by county, or one case of an unusual or exotic arboviral etiology. ### Identification of case contacts: This disease is not spread person to person. # **Case contact management:** None Active Bacterial Core Surveillance Report, Emerging Infections Program Network, Centers for Disease Control, 2005. Centers for Disease Control, Case Definitions for Infectious Conditions Under Public Health Surveillance. MMWR 46 (RR-10), 1997.1 Control of Communicable Diseases Manual (18th Edition), Heymann, D.L., Ed; 2004. Red Book: 2003 Report of the Committee on Infectious Diseases (26th Edition), Larry K. Pickering MD, Ed; 2003. Principles and Practice of Infectious Disease (6th Edition), Gerald L. Mandell, John E. Bennett, and Raphael Dolin Eds; 2005. Massachusetts Department of Public Health, Guide to Surveillance, Reporting and Control, 2006. Page 10 of 11 10/12/2007 Yale University; Department of Laboratory Medicine. Specialty Labs; Use and Interpretation of Laboratory Tests ARUP Labs; Physician's Guide to Laboratory Test Selection and Interpretation Guidelines for Preventing Health-Care-Associated Pneumonia, 2003: Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC) Guidelines for Environmental Infection Control in Health-Care Facilities and Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC) Johns Hopkins Point of Care Information Technology Salt Lake Valley Health Department Disease Investigation Plan Emedicine: Japanese Encephalitis, Dengue, Yellow Fever, Western Equine Encephalitis. www.emedicine.com Page 11 of 11 10/12/2007